On the Cauchy Problem of a Quasilinear Degenerate Parabolic Equation
نویسندگان
چکیده
منابع مشابه
The geometric properties of a degenerate parabolic equation with periodic source term
In this paper, we discuss the geometric properties of solution and lower bound estimate of ∆um−1 of the Cauchy problem for a degenerate parabolic equation with periodic source term ut =∆um+ upsint. Our objective is to show that: (1)with continuous variation of time t, the surface ϕ = [u(x,t)]mδq is a complete Riemannian manifold floating in space RN+1and is tangent to the space RN at ∂H0(t); (2...
متن کاملAsymptotic Behavior of Solutions to a Degenerate Quasilinear Parabolic Equation with a Gradient Term
This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at ∞.
متن کاملThe fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملQuenching Profile for a Quasilinear Parabolic Equation
where 00, Z>0, and uq(x) >0, Vx G [—1, Z]. Without loss of generality, we may assume that uq(x) is smooth and bounded above by 1 such that uo(±Z) = 1. Since uo(x) is positive, the local (in time) existence and uniqueness of a classical solution of the problem (1.1)—(1.3) are trivial (see [8]). Many results in quenching, such as single point quenching and profiles, are similar to those b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2009
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2009/827087